
 Pipelined Fast 2-D DCT Architecture for JPEG Image Compression

Luciano Volcan Agostini
agostini@inf.ufrgs.br

 Ivan Saraiva Silva*
ivan@dimap.ufrn.br

Sergio Bampi
bampi@inf.ufrgs.br

*Federal University of Rio Grande do Norte – DIMAp - Natal - Brazil
Federal University of Rio Grande do Sul - Microelectronics Group

Caixa Postal 15 064 - Porto Alegre – Brazil

Abstract

This paper presents the architecture and the VHDL
design of a Two Dimensional Discrete Cosine Transform
(2-D DCT) for JPEG image compression. This
architecture is used as the core of a JPEG compressor
and is the critical path in JPEG compression hardware.
The 2-D DCT calculation is made using the 2-D DCT
separability property, such that the whole architecture is
divided into two 1-D DCT calculations by using a
transpose buffer. These parts are described in this paper,
with an architectural discussion and the VHDL synthesis
results as well. The 2-D DCT architecture uses 4,792
logic cells of one Altera Flex10kE FPGA and reaches an
operating frequency of 12.2 MHz. One input block with 8
x 8 elements of 8 bits each is processed in 25.2µs and the
pipeline latency is 160 clock cycles.

1. Introduction

Discrete Cosine Transform (DCT) is a mathematical
tool that has a lot of electronics applications, from audio
filters to video compression hardware. DCT transforms
the information from the time or space domains to the
frequency domain, such that other tools and transmission
media can be run or used more efficiently to reach
application goals: compact representation, fast
transmission, memory savings, and so on.

The JPEG image compression standard [1], [2] was
developed by Joint Photographic Expert Group [3]. The
JPEG compression principle is the use of controllable
losses to reach high compression rates. In this context, the
information is transformed to the frequency domain
through DCT. Since neighbor pixels in an image have
high likelihood of showing small variations in color, the
DCT output will group the higher amplitudes in the lower
spatial frequencies [4]. Then, the higher spatial
frequencies can be discarded, generating a high
compression rate and a small perceptible loss in the image
quality. The JPEG compression is recommended for
photographic images, since drawing images are richer in

high frequency areas that are distorted with the
application of the JPEG compression [5].

The JPEG compression can be divided into five main
steps, as shown in Fig. 1: color space conversion,
downsampling, 2-D DCT, quantization and entropy
coding. The first two operations are used only for color
images.

Figure 1 – Steps for JPEG compression of
color images

The color space conversion transforms the RGB input
image to a luminance and chrominance space color, such
as the YCbCr representation. The downsampling
operation reduces the sampling rate of the color
information (Cb and Cr), because the chrominance
components are less important to the human eye. The
quantization operation discards the 2-D DCT high
frequency and small amplitude coefficients. Finally, the
entropy coding uses run-length encoding (RLE),
Huffman, variable length coding (VLC) and differential
coding to decrease the number of bits used to represent
the image [1], [2].

The JPEG compression is a lossy compression, since
downsampling and quantization operations are
irreversible [5].

The first two steps in JPEG compression are related to
color images. If the input image has no color information
these two stages are discarded and the compression starts
at the DCT calculation.

This paper focuses only in a pipelined hardware
implementation of the main part of the JPEG standard: the
Two Dimensional Discrete Cosine Transform. This is the
most critical module to be designed in a JPEG compressor
hardware because of its high algorithm complexity.

This work proposes initially a FPGA implementation
for flexibility, time-to-finish and development purposes.
The results from RTL level VHDL design can be reused
for an ASIC implementation in the future and the
designed VHDL for 2-D DCT calculation can be used as a
core in other designs like video compression.

The paper sections present the algorithm used for the
DCT calculation, the architecture proposed and the VHDL
synthesis results after full completion of the design in
Altera VHDL.

2. Algorithm Used for the DCT Calculation

The 2-D DCT calculation has a high degree of
computational complexity. Since many authors have
proposed simplifications to this calculation, as [6], [7], [8]
and others, this complexity can be minimized according to
the application needs. Specifically for image compression
applications there are many algorithms to compute the
2-D DCT coefficientes and the algorithm chosen in this
paper was proposed in [7] and modified in [9].

The algorithm chosen calculates the DCT in one
dimension (1-D DCT) and the 2-D DCT calculation is
made using its separability property. Thus, using two
1-D DCT steps it is possible to generate the 2-D DCT
coefficients. In an 8x8 input matrix, the first 1-D DCT is
performed row-wise and the second 1-D DCT is
performed column-wise on the outputs of the first
1-D DCT. This simple decomposition reduces the
complexity of the calculation by a factor of four [4]. The
2-D DCT algorithm executes 64 multiplications and 64
additions to calculate each DCT coefficient. Thus, 4096
multiplications and 4096 additions operations are need for
each 8x8 pixels block. Using the row-column
decomposition, one needs to compute 16 1D DCTs (eight
for the rows and eight for the columns) for a total of 1024
multiplications and 1024 additions operations [4] for the
same 8x8 block.

The algorithm proposed in [7] and [9] has other
simplifications to reach higher performance. These
simplifications make possible the use of just 29 additions
and 5 multiplications to calculate an eight point 1-D DCT.
Thus, just 80 multiplications and 464 additions are needed
for the 2-D DCT calculation of one 8x8 block.

This algorithm does not make the complete 1-D DCT
calculation because it is a scaled algorithm. Then, the
1-D DCT outputs are a scale of the real outputs. The DCT
scale is corrected with a post-processing that is added to
the quantization calculation step. Since the quantization
operation and the scale correction are multiplications by
constants, these operations can be performed in a single
operation [4].

The complete algorithm is presented in Tab. 1, where:
• m1 = cos(4π/16)
• m2 = cos(6π/16)

• m3 = cos(2π/16) - cos(6π/16)
• m4 = cos(2π/16)+ cos(6π/16))

Table 1 – 1-D DCT algorithm
Step 1

b0 = a0 + a7 b1 = a1 + a6 b2 = a2 – a4
b3 = a1 – a6 b4 = a2 + a5 b5 = a3 + a4
b6 = a2 – a5 b7 = a0 – a7

Step 2

c0 = b0 + b5 c1 = b1 – b4 c2 = b2 + b6
c3 = b1 + b4 c4 = b0 – b5 c5 = b3 + b7
c6 = b3 + b6 c7 = b7

Step 3

d0 = c0 + c3 d1 = c0 – c3 d2 = c2
d3 = c1 + c4 d4 = c2 – c5 d5 = c4
d6 = c5 d7 = c6 d8 = c7

Step 4

e0 = d0 e1 = d1 e2 = m3 x d2
e3 = m1 x d7 e4 = m4 x d6 e5 = d5
e6 = m1 x d3 e7 = m2 x d4 e8 = d8

Step 5

f0 = e0 f1 = e1 f2 = e5 + e6
f3 = e5 – e6 f4 = e3 + e8 f5 = e8 – e3
f6 = e2 + e7 f7 = e4 + e7

Step 6

S0 = f0 S1 = f4 + f7 S2 = f2
S3 = f5 – f6 S4 = f1 S5 = f5 + f6
S6 = f3 S7 = f4 – f7

3. Two Dimensional DCT Architecture

There are many proposed architectures to calculate de
2-D DCT, as [10], [11], [9], [12] and others. The
2-D DCT architecture used in this paper is generically
presented in Fig. 2. This architecture was designed to
reach a high operating frequency and to allow the use of
pipeline techniques and is based on the architecture
proposed in [9] with some modifications. Thus, the
architecture was divided into two 1-D DCT architectures
and one transpose buffer. The two 1-D DCT architectures
are similar but the bit widths at each pipeline stage are
different. The 1-D DCT architectures are organized in a
six stage pipeline, one stage for each algorithm step. The
transpose buffer operates like a temporal barrier between
the first and the second 1-D DCT, allowing the use of a
2-D DCT global pipeline

Figure 2 – The generic 2-D DCT architecture

The 2-D DCT inputs in our design are matrixes of 8x8
elements eight-bit wide each. The first 1-D DCT receives
and processes this matrixes in a row-wise order. The
transpose buffer receives the row-wise results and gives
the column-wise inputs to the second 1-D DCT
architecture. The second architecture processes the
column-wise data and gives a column-wise data output.

Each 1-D DCT stage uses eight clock cycles and the
1-D DCT architecture latency is 48 clock cycles. A
complete 8x8 matrix is processed at each 64 clock cycles
when the pipeline is full. The 1-D DCT architecture
proposed in [9] uses nine clock cycles per stage except for
the stage with the multiplier that uses fourteen clock
cycles. This 1-D DCT architecture has a latency of 59
clock cycles [9].

The transpose buffer latency is 64 clock cycles and a
new transposed matrix are generated at each 64 clock
cycles.

The designed 2-D DCT global latency is 160 clock
cycles and a complete 8x8 matrix is processed at each 64
clock cycles when the pipeline is full. The 2-D DCT
architecture proposed in [9] has a latency of 172 clock
cycles.

The 2-D DCT input data must pass trough a level
shifter before the DCT calculation starts to be used in the
JPEG compression. This level shifter converts the
unsigned binary input data representation to a two’s
complement representation. The basic operation is a
subtraction of all input values by 128. This operation can
be simplified to just one inversion of the most significant
bit of the input.

3.1. One Dimensional DCT Architecture

The 1-D DCT architecture proposed in [9] and
designed in this paper is presented in the Fig. 3

Considering the 1-D DCT algorithm steps, the use of a
pipelined architecture between these steps becomes
natural. Since the algorithm has six steps, the pipeline will
have six stages, where five perform additions/subtractions
and one performs multiplications. Each pipeline stage
operates with the n-value sets (stored in a,b,c,d,e,f
pipeline registers in Fig. 3) during eight clock cycles.

The five adders in the DCT architecture are ripple-
carry and the multiplier is based on shift-add operations.
This architecture uses a single arithmetic unit in each
stage to perform all the necessary operations at that stage.
Then the units inputs are connected by multiplexers to be
selected which value must be used in each clock cycle.
The mux controls are generated following the algorithm
order.

Temporal barriers to allow the pipeline design are
obtained with the use of ping-pong registers. These
registers and the multiplier design will be focused in
detail in the next sections of the paper.

Since two 1-D DCT architectures are used in the
2-D DCT calculation, the number of bits in each pipeline
stage of the two 1-D DCT architectures are different. This
difference between the output bit width of the pipeline
stages in the two architectures is presented in the Tab. 2.

Table 2 – Bit width differences between the two
1-D DCT architectures

Pipeline Stage First 1-D DCT
bit width

Second 1-D DCT
bit width

1 9 13
2 10 14
3 11 15
4 11 15
5 12 15
6 12 15

The simplified temporal diagram of the 1-D DCT
pipeline is presented in Fig. 4. This figure presents the
partial processing of two 8x8 matrixes, identified by the
letters X and Y. The subscript numbers identify the input
matrix elements that are used in each stage for the
1-D DCT calculation. The 1-D DCT pipeline latency is 48
clock cycles and a complete 1-D DCT calculation uses 64
clock cycles.

Figure 3 – One dimensional DCT architecture

Figure 4 – Simplified time diagram of the 1-D DCT pipeline

Figure 5 - Zoom into the clock cycles 57 to 64 in the time diagram

Fig. 5 presents a zoom in the diagram of Fig. 4,
zooming on clock cycles 57 to 64. In this zoom it is
possible to view which calculations are being performed
in each pipeline stage. The last six lines of the X matrix
are being calculated in the Fig. 5, and the third line is
ready at the end of clock cycle 64. The stage 4 presents
the multiplier pipeline that will be presented in higher
details in the next item.

The 1-D DCT outputs must be serially generated by
this architecture. While some outputs are generated in
parallel (S0, S2, S4 and S6) and others are serially
generated (S1, S3, S4 and S7), the 1-D DCT architecture
must control the correct order of the output values.

The control block generates the signals to control the
pipeline fill-up and emptying through a external signal
that indicates if the input values are valid values for the
image.

3.1.1. Multiplier Architecture

The multiplier used in the 1-D DCT architecture was
decomposed in shifts and adds as a way to minimize the
hardware. Since one of the multiplier inputs is always a
constant, it is possible to preview the number of shifts
necessary for each calculation. The shifters were designed
as barrel shifters.

The multiplier architecture is different from the
architecture proposed in [9]. The architecture proposed in
[9] uses a six stage Wallace tree multiplier that uses 14
clock cycles to perform the five necessary multiplications.
The multiplier designed in this paper, using shifts and
adds, uses 6 clock cycles, saving 8 clock cycles.

The number of shift-adds was restricted to four to save
arithmetic units. This restriction generates an error smaller
than 0.6% in the constants values.

The multiplier architecture was designed to operate in
a two-stage pipeline. This architecture is presented in
Fig. 6.

Internally to the multiplier all the significant bits were
considered to maximize the precision of this calculation
but the multiplier outputs are truncated to discard the
fractional part. The error generated has little significance
for the JPEG compression quality, given that the next
operation, after 2-D DCT operation completion, is an
integer division by numbers higher than 10 and all the
DCT outputs are operated on by such divider.

The designed multiplier makes the necessary 5
multiplications in six clock cycles, conveniently less than
the eight cycles consumed by previous stages. Besides,
the multiplier delay is similar to the delay in the adders of
the other pipeline stages, once the multiplier main
components are also adders.

Figure 6 – Multiplier architecture in the DCT pipeline

3.1.2. Ping-Pong Buffers

The input data in each step of the scaled algorithm is
stored in ping-pong buffers. The input data are serially
generated with a rate of one new value at each clock
cycle. All input values of each stage must be unchanged
during eight clock cycles to allow the correct calculation.
Then, ping-pong buffers are used to synchronize the serial
data generation and the parallel data consumption,
allowing the pipeline implementation.

Fig. 7 presents an architecture for an eight-value ping-
pong buffer. The data enter serially and are stored in the
ping registers. When the Enable signal is set to one, the
ping registers data are transferred in parallel to the pong
register.

Figure 7 - Example of a ping-pong buffer

3.2. Transpose Buffer Architecture

The transpose buffer is used to connect the two
1-D DCT architectures once the first 1-D DCT outputs are
row-wise and the second 1-D DCT inputs must be
column-wise. Fig. 8 presents the transpose buffer, that
was designed with two small 64-word 12-bit wide RAM.

The architecture proposed in [9] uses full custom
registers to design the transpose buffer. The use of

registers is better than the use of conventional RAM cells
since their latency is lower and their performance is
higher. The architecture designed in this paper uses RAM
memory because the used FPGA device has internal RAM
macroblocks. The use of registers in FPGAs takes a lot of
logic cells and their performance is not better than the
internal FPGA RAM performance. Other important
reason to use internal memory is to save logic cells to be
used in the other parts of the JPEG compressor.

The transpose buffer VHDL description is specific to
be used with Altera [13] devices since internal FPGA
memory are defined as Altera macroblocks.

When the first 1-D DCT architecture writes the results
line by line in one memory (RAM1 or RAM2), the second
1-D DCT architecture reads the input values column by
column from the other memory (RAM2 or RAM1). The
read (Rad signal in Fig. 8) and write (Wad signal in Fig.
8) addresses are generated by a control block and this
control block defines, by Control signal in Fig. 8, which
memory is used to Read/Write at each memory access
step.

Figure 8 - Transpose buffer architecture

4. VHDL Synthesis Results

The 2-D DCT architecture was described in VHDL.
This VHDL was synthesized into an Altera Flex 10KE
family FPGA [13].

The VHDL description of the two 1D-DCT
architectures is structural and device independent. This
VHDL can be used for FPGAs or standard cell synthesis
approach. The VHDL of the transpose buffer uses an
Altera specific library that allows the use of internal
memory, making it an Altera dependent description.

The complete synthesis results to Altera FPGAs are
presented in Table 3, whose hardware was fit in an
EPF10K100EQC208-1 device.

Table 3 – 2-D DCT VHDL synthesis results
Logic Cells Period (ns) Memory Bits

1-D DCT 1 2051 73.2 0
1-D DCT 2 2473 80.8 0
Trans.Buf. 274 36.5 1536

2-D DCT 4792 82.1 1536

These results encourage the use of this architecture in
one complete JPEG compressor, including the I/O and bus
control functions which are omitted in this paper. Each
8x8 input matrix are processed in 5.6µs when the pipeline
is full. One gray level image of 640 x 480 pixels is
completely processed in just 25.2ms considering an empty
pipeline, allowing a processing image rate of 39 images
per second. Using the same image size, considering color
images, one image is completely processed in 75.7ms ,
with a processing image rate of 13 images per second.

The 2-D DCT hardware was designed and described in
approximately 5,250 lines of VHDL code. Hardware
simulation and verification was performed module by
module.

6. Conclusions

This paper presented the architecture of the 2-D DCT.
The modules of the transpose 1-D DCT architecture were
designed and synthesized. The control block hardware
design is also completed. The detailed pipeline design,
operators, and the final results of the synthesis of the
modules were also presented, resulting in an architecture
containing 4,792 logic cells, including the control block.
The paper contributed with specific simplifications in the
multiplier stage, by using shift-adds operations, which
lead to hardware simplification and speed up over the
original architecture proposed in [9].

The designed architecture performs the 2-D DCT
calculation of a 640 x 480 pixels gray level image in
25.2ms, allowing its use in a JPEG compressor in
hardware.

References

[1] The International Telegraph and Telephone Consultative
Committee (CCITT). “Information Technology – Digital
Compression and Coding of Continuous-Tone Still Images –
Requirements and Guidelines”. Rec. T.81, 1992.

[2] W. Pennebaker, J. Mitchell. JPEG Still Image Data
Compression Standard, Van Nostrand Reinhold, USA, 1992.

[3] “Home site of the JPEG and JBIG committees”
<http://www.jpeg.org/> (21/04/01).

[4] V. Bhaskaran, K. Konstantinides. Image and Video
Compression Standards Algorithms and Architectures – Second
Edition , Kluwer Academic Publishers, USA, 1999.

[5] J. Miano. Compressed Image File Formats – JPEG, PNG,
GIF, XBM, BMP, Addison Wesley Longman Inc, USA, 1999.

[6] W. Chen, C. Smith, S. Fralick. “A Fast Computational
Algorithm for the Discrete Cosine Transform”. IEEE
Transactions on Communications, v. COM-25, n. 9, p. 1004-
1009, 1977.

[7] Y. Arai, T. Agui, M. Nakajima. “A Fast DCT-SQ Scheme
for Images”. Transactions of IEICE, vol. E71, n°. 11, 1988, pp.
1095-1097.

[8] E. Feig, S. Winograd. “Fast Algorithms for the Discrete
Cosine Transform”. IEEE Transactions on Signal Processing , v.
40, n. 9, p. 2174-2193, 1992.

[9] M. Kovac, N. Ranganathan. “JAGUAR: A Fully Pipeline
VLSI Architecture for JPEG Image Compression Standard”.
Proceedings of the IEEE , vol. 83, n°. 2, 1995, pp. 247-258.

[10] A. Madisetti, A. Willson Jr. “A 100 MHz 2-D 8 x 8
DCT/IDCT Processor for HDTV Applications”. IEE
Transactions on Circuits and Systems for Video Technology , v.5,
n.2, p.158-165, Apr. 1995.

[11] C. Wang, C. Chen. “High-Throughput VLSI Architectures
for the 1-D and 2-D Discrete Cosine Transforms”. IEE
Transactions on Circuits and Systems for Video Technology , v.5,
n.1, p.31-40, Feb. 1995.

[12] Y. Lee, T. Chen, L. Chen., M. Chen, C. Ku. “A Cost-
Effective Architecture for 8 x 8 Two-Dimensional DCT/IDCT
Using Direct Method”. IEEE Transactions on Circuits and
Systems for Video Technology , v.7, n.3, p.459-467, Jun. 1997.

[13] Altera Digital Library, Altera Corporation, June 2000.

